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Typically, photonic waveguides designed for nonlinear frequency conversion rely on intuitive and established
principles, including index guiding and bandgap engineering, and are based on simple shapes with high degrees
of symmetry. We show that recently developed inverse-design techniques can be applied to discover new kinds of
microstructured fibers and metasurfaces designed to achieve large nonlinear frequency-conversion efficiencies. As
a proof of principle, we demonstrate complex, wavelength-scale chalcogenide glass fibers and gallium phosphide
three-dimensional metasurfaces exhibiting some of the largest nonlinear conversion efficiencies predicted thus far,
e.g., lowering the power requirement for third-harmonic generation by 104 and enhancing second-harmonic
generation conversion efficiency by 107. Such enhancements arise because, in addition to enabling a great degree
of tunability in the choice of design wavelengths, these optimization tools ensure both frequency- and
phase-matching in addition to large nonlinear overlap factors. © 2018 Chinese Laser Press
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1. INTRODUCTION

Nonlinear frequency conversion plays a crucial role in many
photonic applications, including ultra-short pulse shaping
[1,2], spectroscopy [3], generation of novel optical states
[4–6], and quantum information processing [7–9]. Although
frequency conversion has been studied exhaustively in bulky
optical systems, including large ring resonators [10] and etalon
cavities [11], it remains largely unstudied in micro- and nano-
scale structures where light can be confined to lengthscales of
the order of or even smaller than its wavelength. By confining
light over long a time and to small volumes, such highly com-
pact devices greatly enhance light–matter interactions, enabling
similar as well as new [12] functionalities compared to those
available in bulky systems but at much lower power levels.
Several proposals have been put forward based on the premise
of observing enhanced nonlinear effects in structures capable of
supporting multiple resonances at far-away frequencies
[13–21], among which are micro-ring resonators [22,23]
and photonic crystal (PhC) cavities [24,25]. However, to date,
these conventional designs fall short of simultaneously meeting
the many design challenges associated with resonant frequency
conversion, chief among them being the need to support multi-
ple modes with highly concentrated fields, exactly matched
resonant frequencies, and strong mode overlaps [26]. Recently,

we proposed to leverage powerful, large-scale optimization
techniques (commonly known as inverse design) to allow
computer-aided photonic designs that can address all of these
challenges.

Our recently demonstrated optimization framework allows
automatic discovery of novel cavities that support tightly local-
ized modes at several desired wavelengths and exhibit large non-
linear mode overlaps. As a proof-of-concept, we proposed
doubly resonant structures, including multi-layered, aperiodic
micro-post cavities and multi-track ring resonators, capable of
realizing second-harmonic generation efficiencies exceeding
104 W−1 [27,28]. In this paper, we extend and apply this op-
timization approach to design extended structures, including
micro-structured optical fibers and PhC three-dimensional
metasurfaces, as shown in Fig. 1, for achieving high-efficiency
(second- and third-harmonic) frequency conversion. Harmonic
generation, which underlies numerous applications in science,
including coherent light sources [29], optical imaging and
microscopy [30,31], and entangled-photon generation [32],
is now feasible at lower power requirements thanks to the avail-
ability of highly nonlinear χ�2� and χ�3� materials such as III–V
semiconductor compounds [33,34] and novel types of
chalcogenide glasses [35]. In combination with advances in
materials synthesis, emerging fabrication technologies have also
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enabled demonstrations of sophisticated micro-structured
fibers [36] and metasurfaces [37–44], paving the way for
experimental realization of inverse-designed structures of
increased geometric and fabrication complexity, which offer
orders-of-magnitude enhancements in conversion efficiencies
and the potential for augmented functionalities.

Given a material system of intrinsic χ�2� or χ�3� nonlinear
coefficient, the efficiency of any given frequency-conversion
process in a resonant geometry will be determined by a few
modal parameters. The possibility of confining light within
small mode volumes over a long time or distance leads to sig-
nificant gains in efficiency (i.e., lower power requirements),
stemming from the higher intensity and cascadability of non-
linear interactions (compensating for the otherwise small bulk
nonlinearities). In particular, the efficiency of such resonant
processes depends on the product of mode lifetimes and a
nonlinear coefficient β, given by Eqs. (6) and (8) below, which
generalizes the familiar concept of quasi-phase-matching to sit-
uations that include wavelength-scale resonators [26]. For
propagating modes, leaky or guided, the existence of a propa-
gation phase further complicates this figure of merit, with
optimal designs requiring: (i) phase-matching and frequency-
matching conditions, (ii) large nonlinear mode overlaps β, and
(iii) large dimensionless lifetimes Q (low material absorption
and/or radiative losses in the case of leaky modes). The main
design challenge is the difficult task of forming a doubly res-
onant cavity with far-apart modes that simultaneously exhibit
long lifetimes and large β, along with phase and frequency
matching. To date, the majority of prior works on frequency
conversion in fibers [45–47] and metasurfaces [38–40,42,48–51]
have focused on only one of these aspects (usually phase match-
ing) while ignoring the others. The geometries discovered by our
optimization framework, in contrast, address the above criteria,
revealing complex fibers and metasurfaces supporting TE or
TMmodes with guaranteed phase and frequency matching, long
lifetimes Q , and enhanced overlap factors β at any desired
propagation wavevector, and resulting in orders-of-magnitude
enhancements in conversion efficiencies.

2. OVERVIEW OF OPTIMIZATION

The possibility of fine-tuning spatial features of photonic de-
vices to realize functionalities not currently achievable by con-
ventional optical design methodologies based on index guiding
and bandgap confinement (which work exceedingly well but

are otherwise limited for narrowband applications) has been
a major drive behind the past several decades of interest in
the topic of photonic optimization [52,53]. Among these tech-
niques are probabilistic Monte Carlo algorithms, e.g., particle
swarms, simulated annealing, and genetic algorithms [54–56].
Though sufficient for the majority of narrowband (single-
mode) applications, many of these gradient-free methods are
limited to typically small sets of design parameters [57] that
often prove inadequate for handling wideband (multi-mode)
problems. On the other hand, gradient-based inverse-design
techniques are capable of efficiently exploring a much larger
design space by making use of analytical derivative information
of the specified objective and constraint functions [58], dem-
onstrated to be feasible for as many as 109 design variables [59].
Recently, the development of versatile mathematical program-
ming methods and the rapid growth in computational power
have enabled concurrent progress in photonic inverse
design, allowing theoretical (and more recently, experimental)
demonstrations of complex topologies and unintuitive geom-
etries with unprecedented functionalities that would be
arguably difficult to realize through conventional intuition
alone. However, to date, most applications of inverse design
in photonics are confined to linear devices such as mode con-
verters, waveguide bends, and beam splitters [57,58,60–65].
We believe that this paper along with our recent works
[27,28] provides a glimpse of the potential of photonic
optimization in nonlinear optics.

A typical optimization problem seeks to maximize or
minimize an objective function f , subject to certain constraints
g , over a set of free variables or degrees of freedom (DOFs) [66].
Generally, one can classify photonic inverse design into two
different classes of optimization strategies, based primarily
on the nature or choice of DOF [67]. Given a computational
domain or grid, the choice of a finite-dimensional parameter
space not only determines the degree of complexity but also
the convergence and feasibility of the solutions. One possibility
is to exploit each DOF in the computational domain as an op-
timization parameter, known as topology optimization (TO),
in which case one typically (though not always) chooses the
dielectric permittivity of each pixel ϵ�r� as a DOF (known
as a continuous relaxation parameter [68]). Another possibility,
known as shape optimization, is to expand the optimization
parameter space in a finite set of shapes (independent of the
computational discretization), which may be freeform contours
represented by so-called level sets [69] (the level-set method) or
basic geometric entities with simpler parametrizations (e.g., pol-
ytopes) [70]. In the level-set method, the zeros of a level-set
“function” Φ�r� define the boundaries of “binary shapes”;
the optimization then proceeds via a level-set partial differential
equation characterized by a velocity field, which is, in turn,
constructed from derivative information [69]. A much simpler
variant (which we follow) is to choose a fixed but sufficient
number of basic binary shapes whose parameters can be made
to evolve by an optimization algorithm. Essentially, for such a
parametrization, the mathematical representations of the shapes
must yield continuous (analytic) derivatives, which is not fea-
sible a priori due to the finite computational discretization and

Fig. 1. Schematic illustration of third-harmonic generation and
second-harmonic generation processes in inverse-designed microstruc-
tured fibers and metasurfaces, respectively.
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can instead be enforced by the use of a “smoothing kernel”
(described below).

A generic TO formulation is written down as

max ∕min f �ϵα�, (1)

g�ϵα� ≤ 0, (2)

0 ≤ ϵα ≤ 1, (3)

where the DOFs are the normalized dielectric permittivities
ϵα ∈ �0, 1� assigned to each pixel or voxel (indexed α) in a
specified volume [58,60]. The subscript α denotes appropriate
spatial discretization r → �i,j,k�αΔ with respect to Cartesian
or curvilinear coordinates. Depending on the choice of back-
ground (bg) and structural materials, ϵα is mapped onto a
position-dependent dielectric constant via ϵα��ϵ−ϵbgϵα�ϵbg�.
The binarity of the optimized structure is enforced by penalizing
the intermediate values ϵ ∈ �0, 1� or utilizing a variety of filter
and regularization methods [58]. Starting from a random initial
guess, the technique discovers complex structures automatically
with the aid of powerful gradient-based algorithms such as the
method of moving asymptotes (MMA) [71]. For an electromag-
netic problem, f and g are typically functions of the electric E or
magneticH fields integrated over some region, which are in turn
solutions of Maxwell’s equations under some incident current or
field. In what follows, we exploit direct solution of frequency-
domain Maxwell’s equations

∇ ×
1

μ
∇ × E − ϵ�r�ω2E � iωJ, (4)

describing the steady-state field E�r;ω� in response to incident
currents J�r,ω� at frequency ω. While solution of Eq. (4) is
straightforward and commonplace, the key to making optimiza-
tion problems tractable is to obtain a fast-converging and com-
putationally efficient adjoint formulation of the problem.Within
the scope of TO, this requires efficient calculations of the deriv-
atives ∂f

∂ϵα
, ∂g
∂ϵα

at every pixel α, which we perform by exploiting
the adjoint-variable method (AVM) [58].

While the TO technique is quite efficient in handling the
enormity of an unconstrained design space, it often leads to
geometries with irregular features that are difficult to fabricate.
An alternative approach that is in principle more conducive to
fabrication constraints is to exploit shape optimization. In this
work, we primarily focus on a simple implementation of the
latter that employs a small and, hence, limited set of elementary
geometric shapes, e.g., ellipses [72] and polytopes, parame-
trized by a few DOFs. In particular, we express the dielectric
profile of the computational domain as a sum of basic shape
functions with permittivities, ϵα �

P
βH β�rα; fpβg�, described

by shape functions H β and a finite set of geometric parameters
fpβg, where β denotes the shape index. Here, to deal with po-
tential overlap of two or more shapes, we implement a filter
function that enforces the same maximum-permittivity
constraint ϵ ≤ 1 described above. The derivatives of a given
objective function f (and associated constraints) can then
be obtained via the chain rule ∂f

∂pi
� ∂f

∂ϵα
∂ϵα
∂pi
, where the smooth-

ness of the derivatives is guaranteed by insisting that the shape
functions H be continuously differentiable functions. Below,
we choose non-piecewise-constant ellipsoidal shapes with

exponentially varying dielectric profiles near the boundaries,
the smoothness of which is determined by a few simple param-
eters that can, at various points along the optimization, be
slowly adjusted to realize fully binary structures upon conver-
gence. Such a “relaxation” process [70] is analogous to the
application of a binary filter in the objective function [58].

Any nonlinear frequency conversion process can be viewed
as a frequency mixing scheme in which two or more constituent
photons at a set of frequencies fωng interact to produce an out-
put photon at frequency Ω � P

ncnωn, where fcng can be
either negative or positive, depending on whether the corre-
sponding photons are created or destroyed in the process
[73]. Given an appropriate nonlinear tensor component
χijk…, with i, j, k,… ∈ fx, y, zg, mediating an interaction be-
tween the field components Ei�Ω� and E1j, E2k,…, we begin
with a collection of point dipole currents, each at the constitu-
ent frequency ωn, n ∈ f1, 2,…g, such that Jn � ênνδ�r − r 0�,
where ênν ∈ fê1j, ê2k,…g is a polarization vector chosen so
as to excite the desired electric-field polarization components
(ν) of the corresponding mode at an appropriate position r 0.
Given the choice of incident currents Jn, we solve Maxwell’s
equations to obtain the corresponding constituent electric-field
response En, from which one can construct a nonlinear polari-
zation current J�Ω� � ϵ�r�QnE

jcnj���
nν êi, where Enν � En · ênν

and J�Ω� can be generally polarized (êi) in a (chosen) direction
that differs from the constituent polarizations ênν. Here, ���
denotes complex conjugation for negative cn and no conjuga-
tion otherwise. Finally, maximizing the radiated power,
−Re�R J�Ω�� · E�Ω�dr�, due to J�Ω�, one is immediately led
to the following nonlinear optimization problem:

maxϵ f �ϵ;ωn� � −Re

�Z
J�Ω�� · E�Ω�dr

�
,

M�ϵ,ωn�En � iωnJn, Jn � ênνδ�r − r 0�,
M�ϵ,Ω�E�Ω� � iΩJ�Ω�, J�Ω� � ϵ

Y
n

E jcnj���
nν êi,

M�ϵ,ω� � ∇ ×
1

μ
∇ × −ϵ�r�ω2, (5)

where ϵ is given by either the topology or shape parameteriza-
tions described above. Writing down the objective function in
terms of the nonlinear polarization currents, it follows that sol-
ution of Eq. (5), obtained by employing any mathematical pro-
gramming technique that makes use of gradient information,
e.g., the AVM [58], maximizes the nonlinear coefficient (mode
overlap) associated with the aforementioned nonlinear optical
process. The above framework can be easily extended to con-
sider propagating modes once we take into account the appro-
priate Bloch boundary conditions that may arise from any
desired wave vectors imposed at the requisite frequencies
[74]. In the case of optical fibers or PhC metasurfaces (or, more
generally, any waveguiding system), such an extension naturally
guarantees perfect phase and frequency matching of the rel-
evant modes in the optimized structure.

3. THIRD-HARMONIC GENERATION IN FIBERS

Conventional microstructured fibers (e.g., Bragg and holey fi-
bers) are typically designed based on intuitive principles like
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slow light [47], index guiding, and bandgap confinement [52],
and thus often consist of periodic cross sections comprising
simple shapes [75,76]. Below, we apply the aforementioned op-
timization techniques to propose much more complicated het-
erostructure fibers designed to enhance third-harmonic
generation at any desired wavelength. To achieve large third-
harmonic generation efficiencies, the fiber must support two
co-propagating modes of frequencies ω1 and ω3 � 3ω1 and
wavenumbers that satisfy the phase-matching condition
k3 � 3k1. Furthermore, the system must exhibit low radia-
tive/dissipative losses or, alternatively, attenuation lengths that
are much longer than the corresponding interaction lengths L,
defined as the propagation length at which 50% of the funda-
mental mode is upconverted. In the small-input signal regime,
the converted third-harmonic output power P3 ∝ P2

1 and the
interaction length L � 16

3k1Z 0jβ3jP1
depend on the incident power

P1, vacuum impedance Z 0, and nonlinear overlap factor [77]

β3�
∯ χ�3��E�

1 ·E3��E�
1 ·E

�
1�dS�

Re
h
1
2∯

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E�

1 ×H1� ·bzdSp i�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re

h
1
2∯ �E�

3 ×H3� ·bzdSi
r ,

(6)

which involves a complicated spatial overlap of the two modes
over the cross-sectional surface S of the fiber. Note that the
attenuation coefficient γ ≡ ω∕2vgQ of each mode (the inverse
of their respective attenuation length) is proportional to their
lifetime Q and group velocity vg.

We focus on fibers comprising chalcogenide/polyethersul-
fone (PES) composites of permittivities ϵAs2Se3 � 5.8125 and
ϵPES � 2.4025 at telecom wavelengths. Although our tech-
nique can be readily applied to design the requisite properties
at any given wavenumber k and for any desired polarization, we
specifically focus on designs for operation at wavenumbers in
the range 0.1�2π∕λ� < kopt < 2.3�2π∕λ�, with λ denoting the
corresponding vacuum wavelength and kopt the optimized
wavenumber. We consider both leaky and guided modes above
and below the PES lightline ω � ck∕ ffiffiffiffiffiffiffiffi

ϵPES
p

, respectively, along
with different choices or transverse electric TE01 and transverse
magnetic TM01 polarizations. TE01 modes are those polarized
along the plane of the fiber and consist primarily of circulating
Ex and Ey electric fields [78], while TM01 modes have electric
fields Ez polarized mainly along the propagation direction z.

The top insets in Fig. 2 show an inverse-designed fiber cross
section that supports phased-matched TM01 fundamental and
third-harmonic modes (with profiles superimposed on the in-
sets) at kopt � k1 � 1.4�2π∕λ�. To ensure that the optimiza-
tion algorithm selectively finds TM01 modes, we employ a
magnetic current J1 ∼ ∇ × δ�r�ẑ as the source in Eq. (5), result-
ing in electric fields of the desired polarization. The fiber cross
section is represented by a 3λ × 3λ computational cell consist-
ing of 300 pixel × 300 pixel, where the size of each pixel is
0.01λ × 0.01λ. From Fig. 2 (inset), it is clear that both the fun-
damental and third-harmonic modes are well confined to the
fiber core and exhibit substantial modal overlaps, while again,
the phase-matching condition is automatically satisfied by the
optimization process, with k3 � 3kopt. We find that jβ3j2 ≈
2 × 104�χ�3�∕λ4� is almost 4 orders of magnitude larger than

what has been demonstrated in standard plain fibers, which
have typical values of jβ3j2 ≲ 2�χ�3�∕λ4� [77]. Figure 2 shows
the dispersion of the two leaky modes (solid lines), with the
PES lightline represented by the gray region and their corre-
sponding dimensionless lifetimes, around Q1 ≈ 106 and Q3 ≈
105 at kopt, plotted as dashed lines. Noticeably, while the fiber is
optimized to ensure phase matching at a single kopt, any phase
mismatch remains small in the vicinity of k ≈ kopt. In fact, even
for k ≪ kopt, the frequency difference is found to be only
around 1%. Technically, the only factor limiting the lifetimes
is the finite computational cross-section (imposed by the finite
computational cell), with much larger lifetimes possible for
larger cross sections. Away from kopt, the quality factors de-
crease while remaining relatively large over a wide range of k.
Considering the group velocity vg around kopt, we find that the
attenuation length of the fiber Lrad � 1∕γ ≈ 2vgQ∕ω �
1.66 × 105λ. We note that while the fiber supports multiple
modes around these wavelengths, the only modes near kopt are
those discovered by the optimization and shown in the figure.

Figure 3 shows the β3 corresponding to fibers optimized for
operation at different values of kopt and polarizations, and ob-
tained by application of either topology (squares or circles) or
shape (triangles) optimization. The figure shows a general trend
in which β3 decreases with increasing kopt for both polariza-
tions, except that TM01 fibers tend to exhibit non-monotonic
behavior, with β3 increasing sharply at an intermediate kopt ≈
2π∕λ below the lightline, above which it drops significantly be-
fore increasing again in the guided regime, peaking again at
kopt ≈ 1.7�2π∕λ� before plummeting once again. We suspect
that this complicated behavior is not a consequence of any

0.5

1 2 3 4 50
k (2π/λ)

103

102

S

Q

3.5

3

2.5

2

1.5

1

Fig. 2. Dispersion relations (solid line) and radiative lifetimes Q
(dashed line) versus propagation wavenumber k of TM01 fundamental
ω1 (red) and third-harmonic ω3 (blue) modes in a chalcogenide/PES
fiber optimized to achieve frequency matching ω3 � 3ω1 and large
nonlinear overlaps at kopt � 1.4�2π∕λ�. The shaded area in gray in-
dicates regions lying below the chalcogenide light cone. The top insets
show the fiber cross section overlaid with corresponding power
densities at ω1 (left) and ω3 (right).
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fundamental limitation or physical consideration, but rather
stems from the optimization algorithm getting stuck in local
minima. Regardless, our results provide a proof-of-principle
of the existence of fiber designs with performance characteris-
tics that can greatly surpass those of traditional, hand-designed
fibers. Furthermore, Fig. 3 shows typical fiber cross sections at
selective kopt, along with their corresponding superimposed
(fundamental) mode profiles, illustrating the fabricability of
the structures, in which the structure via shape optimization
[Fig. 3(iv)] is easiest for fabrication.

Finally, we provide estimates of the power requirements
associated with these fiber designs. We find that, for a
TM01 fiber operating at kopt � 1.4�2π∕λ� and at a wavelength
of λ � 1 μm, conversion efficiencies of 50% can be attained at
relatively small pump powers P1 ≈ 1.7 mW over a fiber seg-
ment L ≈ 3 cm, while the corresponding (radiative) attenua-
tion lengths are ≈17 cm. For comparison, plain silica fibers
[77] exhibit mode-overlap factors β3 ≈ 2� χ�3�∕λ2�, leading
to conversion efficiencies of the order of 10−8% for the same
input power and fiber length. (Note that typical PhC fibers rely
on enhancements such as slow light effects [47], exhibiting even

poorer β3 than that of a fiber.) Hence, the optimized structures
achieve considerably (∼109 times) higher conversion efficien-
cies, an improvement that is only partially due to the larger χ�3�

of chalcogenide compared to glass (approximately 440 times
larger). In particular, defining the normalized interaction fiber
length L� χ�3��, which removes any source of material enhance-
ment, we find that the optimized fiber leads to a factor of 104

enhancement. Similarly, we find that a TE01 fiber operating at
kopt � 0.2�2π∕λ� results in a factor of 103 enhancement
compared to plain fibers.

4. SECOND-HARMONIC GENERATION IN
METASURFACES

Metasurfaces offer an advantageous platform for realizing com-
plicated beam generation and wavefront shaping over extended
surfaces [79] and have recently been exploited in conjunction
with nonlinear materials as a means of generating and control-
ling light at multiple wavelengths [43,48,80,81]. A typical non-
linear metasurface can suffer from poor frequency-conversion
efficiencies due to a combination of weak confinement,
material absorption, and sub-optimal mode overlaps. In par-
ticular, typical designs exploit plasmonic [38–40,50] or
all-dielectric [42,49] elements comprising simple shapes dis-
tributed over a unit cell, including split ring resonators
[38,40,50], cross bars [39], and cylindrical posts [49], with
the main focus being that of satisfying the requisite frequency-
and phase-matching condition [82]. Here, we show that inverse
design can not only facilitate the enforcement of frequency- and
phase-matching requirements but also allow further enhance-
ments stemming from the intentional engineering of nonlinear
modal overlaps, often neglected in typical designs.

To achieve large second-harmonic generation efficiencies, a
metasurface must support two extended resonances at frequen-
cies ω1 and ω2 � 2ω1 and wavevectors satisfying the phase-
matching condition k2 � 2k1. As illustrated schematically
in Fig. 4(a), a typical setup consists of an incident wave of
power per unit cell P1 at some frequency and angle (described
by wavenumber k1) and a corresponding output harmonic
wave of power per unit cell, P2. In the small-signal regime,
the output power P2 ∝ P2

1 scales quadratically with P1,
resulting in a conversion efficiency per unit cell of

η � P2

P2
1

� Q4
1Q

2
2

Q2
1,radQ2,rad

jβ2j2λ1
πϵ0c

, (7)

where Q and Q rad denote total and radiative dimensionless
lifetimes and β2 the nonlinear overlap factor:

β2 �
R
dV χ�2�E�

2 · E
2
1�R

dV ϵ1jE1j2
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

dV ϵ2jE2j2
p � : (8)

Note that here the conversion efficiency is defined as the
efficiency per unit cell for such an extended surface, hence
the volume integration is performed inside a unit cell.

We now apply our optimization framework to discover new
all-dielectric three-dimensional metasurfaces, with the permit-
tivity of the medium ϵGaP taken to be that of gallium phosphide
near telecom wavelengths [83,84]. Note, however, that the
same framework can be easily extended to design plasmonic

Fig. 3. Nonlinear overlap factor jβ3j2 corresponding to fundamen-
tal and third-harmonic modes in fibers that have been optimized to
ensure phase-matched modes (k3 � 3kopt) at various fundamental-
mode propagation wavenumbers kopt, for both TE01 (blue) and
TM01 (red) polarizations, by the application of either topology (circles
or squares) or shape (triangles) optimization. The gray-shaded area de-
notes the regime of guided modes below the chalcogenide lightline.
For comparison, also shown is jβ3j2 (black cross) of a standard plain
fiber manually designed for operation at ω1 � 0.914�2πc∕λ� and
k1 � 0.992�2π∕λ� [77]. Shown as insets are fiber cross sections along
with power densities of fundamental modes optimized at four different
kopt � f0.1, 1.4, 1.7, 2.0g�2π∕λ� for both TE01 (upper insets) and
TM01 (lower insets), with (i)–(iii) obtained via topology optimization
and (iv) via shape optimization.
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surfaces. The metasurfaces illustrated schematically in Fig. 4 are
square PhC slabs of in-plane periodicity Λ × Λ and finite thick-
ness t . To ensure fabricability, here we consider z-invariant
structures, in which the optimization parameters are taken
to lie in the plane perpendicular to the z axis, resulting in a
structure that can be fabricated by etching. As a proof-of-
principle, we consider metasurfaces suspended in air, while
the same framework can be easily applied to include any sub-
strate [27].

Figure 4 shows cross sections of the unit cell of two GaP
metasurfaces of thickness t � 612 nm and Λ � 480 nm, de-
signed for operation at a fundamental frequency ω1 � 1.57 ×
1015 rad∕s (λ � 1.2 μm) so as to satisfy both frequency- and
phase-matching conditions. Also shown are the corresponding
fundamental and harmonic mode profiles. The structure on the
left is optimized for operation at an incident angle θ ≈ 3.6°
relative to the out-of-plane axis, and is found to exhibit large
radiative lifetimes Q rad

1�2� ≈ 6�2� × 104 and overlap factor
jβ2j2 � 1.6 × 10−3� χ�2�∕λ3�. The structure on the right is in-
stead optimized for operation at normal incidence, resulting in
a slightly smaller jβ2j2 � 4 × 10−4� χ�2�∕λ3�. Because of the
symmetry of the structure, the modes exhibit infinite lifetimes
(and, hence, are technically dark modes), though in practice,
fabrication imperfections necessarily lead to finite lifetimes.
Furthermore, Fig. 4(b) illustrates the convergence of the TO
optimization process to achieve structure (i), converged within
∼103 iterations. Table 1 compares a few of the relevant FOMs
for representative metasurface designs, which include both plas-
monic and dielectric structures. Although comparing β2 ap-
pears to be impossible due to a surprising lack of relevant
modal parameters in these studies [38,39,49,50], such as the
absence of radiative and dissipative quality factors, we find that
the optimized designs exhibit orders of magnitude larger
conversion efficiencies. While it is difficult to distinguish the

relative impact of the mode lifetimes and overlap factors,
arguably, the optimized structures overcome several limitations
associated with previous designs. On the one hand, plasmonic
structures exhibit tightly confined modes and therefore lead to
large nonlinear overlaps, but absorptive losses and weak
material nonlinearities imply that they suffer from small life-
times. On the other hand, several of the proposed all-dielectric
metasurfaces have had negligible material losses and, hence,
larger lifetimes, but have not been designed to ensure large
nonlinear overlaps.

5. CONCLUDING REMARKS

We have demonstrated an optimization approach for the
design of nonlinear photonic fibers and metasurfaces. The
optimized structures demonstrate very high leaky-mode life-
times for both fundamental and harmonic modes and
orders-of-magnitude larger overlap factors than traditional de-
signs. Inverse design not only overcomes efficiency limitations
of traditional index fibers and PhCmetasurfaces but also greatly
reduces challenges and difficulties inherent to the design
process. Although in this paper we have not considered effects
resulting from self- or cross-phase modulation, we expect no
significant impact on the conversion efficiency in the small-
signal limit, since the finite bandwidth around the designated
phase-matched propagation wavevectors can potentially com-
pensate for any small phase mismatch that might arise. At larger
powers where these effects cannot be ignored, one could ac-
count and compensate for them through minor modifications
to the optimization objective function, the subject of future
work. Furthermore, we will consider extending our inverse-
design framework to terahertz frequency generation and other
nonlinear processes.
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